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Detecting dynamic mean shifts is particularly important in monitoring feedback-
controlled processes in which time-varying shifts are usually observed. When multi-
variate control charts are being utilized, one way to improve performance is to reduce
dimensions. However, it is difficult to identify and remove non-informative vari-
ables statically in a process with dynamic shifts, as the contribution of each variable
changes continuously over time. In this paper, we propose an adaptive dimension
reduction scheme that aims to reduce dimensions of multivariate control charts
through online variable evaluation and selection. The resulting chart is expected to
keep only informative variables and hence maximize the sensitivity of control charts.
Specifically, two sets of projection matrices are presented and dimension reduction
is achieved via projecting process vectors into a low-dimensional space. Although
developed based on feedback-controlled processes, the proposed scheme can be easily
extended to monitor general multivariate applications. Copyright © 2008 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The importance of integrating statistical process control (SPC) with feedback-controlled processes
to minimize process variance and maintain long-term quality has been widely addressed1–5. Under
the integrated SPC/feedback-control framework, the primary role of a feedback controller is to

compensate for process deviations by regulating controllable factors and to prevent process faults from
affecting product quality. In contrast, the primary purpose of SPC is to discover underlying process shifts
and to signal for operational intervention when necessary. The interaction between these two techniques has
given rise to new challenges for SPC under various conditions.
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One of the most significant changes that the feedback controllers generated is the presence of dynamic
shift patterns. In the event of a sustained mean shift with a constant size, the observed shifts of process
variables are time-varying. Intensive discussions have been seen in the literature concerning the monitoring
of feedback-controlled processes6–8. Among them, the joint monitoring scheme proposed by Tsung et al.9

has gained wide recognition and was further extended by Tsung and Apley10 and Jiang11. This method
suggests forming a multidimensional vector by stacking both input variables and output variables together;
Hotelling’s T 2 chart is then employed to monitor the process.
However, the application of a multivariate control chart runs the risk of including redundant variables,

which is cost inefficient and is just as harmful as ignoring vital variables12. For example, the output of the
proportional-integral (PI)-controlled process in Jiang11 approaches zero in its steady state. Consequently,
the joint monitoring of both the input and output streams is not advantageous to the monitoring of only the
input stream. In general, adding interferential factors will reduce the sensitivity of a control chart. Therefore,
it is crucial to conduct variable selection in a multivariate control chart. Identifying and monitoring variables
that are truly contributing and informative are expected to help in the quick detection of process faults.
The use of variable selection techniques has been considered in different stages of multivariate control chart

implementation. Early research emphasized the diagnosis of out-of-control alarms12–14. Variable selection
techniques are utilized to search for variables that are responsible for an alarm. Once identified, such
responsible variables can be traced to locate the source of assignable causes.
Variable selection also plays an important role in the design phase of a multivariate control chart. Encom-

passing all observable variables without evaluating their individual significance will lead to an oversized
vector, which in turn slows down the detection of process faults. One of the solutions is to reduce dimen-
sions by utilizing principle component analysis (PCA)12,14,15. The basic idea of PCA monitoring is to find
efficient principle components (PCs), which are linear combinations of the original variables, and to monitor
these PCs instead of the original variables. The number of PCs to be monitored is usually less than that
of the process variables. However, the selection of essential PCs is a much debated subject. Some authors
have suggested monitoring the first several PCs that correspond to large eigenvalues12,14 and argued that
if the assignable causes move the process mean vector outside the normal operating conditions, the last
several PCs that correspond to small eigenvalues may be more sensitive to process failures. Moreover, the
PCs are determined in the design phase and are not supposed to change in the running phase. This has
obviously ignored dynamic features of feedback-controlled processes, as the importance of the original
variables is not fixed. The PCs that are sensitive to small shifts are not necessarily instructive for large shift
detection.
The purpose of this paper is to propose an adaptive scheme that adjusts the dimensions of a multivariate

control chart on-line based on real-time information collected from a target process. Variables are adopted
or dropped dynamically and only the most informative variables are monitored at each step. The dynamic
optimization of the charting statistics is expected to improve the overall performance.
The remainder of this paper is organized as follows. The modeling and the conventional monitoring of

feedback-controlled processes are reviewed in Section 2. In Section 3, an index that measures the efficiency
of a multivariate control chart is introduced. An adaptive dimension reduction (ADR) procedure is proposed
in Section 4 and related design issues are discussed. The performance of this procedure is studied and
compared with existing methods in Section 5. Finally, Section 6 concludes this paper with a summary of
major findings.

2. MODELING AND CONVENTIONAL MONITORING OF
FEEDBACK-CONTROLLED PROCESSES

In order to gain quick detection of faults in a feedback-controlled process, it is fundamentally important to
understand the way in which the process responds to common faults. In this section, a representative model
for feedback-controlled processes is discussed and important features of responses to common process faults
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are identified and analyzed. The review of existing methods is expected to discover opportunities for further
improvement.
Consider a process with a single input and a single output. Without loss of generality, we assume that the

target value of the process, T , equals zero. Let et be the measured deviation from the target, and let xt−1
be a controllable factor. The following equation models a collection of run-to-run (R2R) processes in the
semiconductor manufacturing and chemical industries5,9,10,16–19:

et ≡ yt −T +dt = xt−1+dt (1)

The process disturbance series dt , reflects the uncertainty of the operational environment. In this paper, we
only consider ARMA(1,1) models, as actual stationary industrial processes can often be presented by ARMA
models with orders less than two10. Denote dt =�dt−1+�t −��t−1, where �t is a white noise series that
follows a normal distribution with mean zero and variance �2� . The whole idea, however, can be extended to
processes with other disturbance models without much modification. For example, if �→0, the disturbance
becomes an MA(1) process; if �→0, it becomes an AR(1) model; if, in particular, �=�, the disturbance
becomes a series of white noise.
Feedback controllers are usually set up to regulate the controllable factors continuously to maintain process

output on target. In industrial practice, the PI controller has shown widespread popularity due to its simple
form and efficient capability19,20. The general form of the PI controller is given as:

xt =kPet +kI
t∑

k=0
ek =kPet +kI

1

1−B
et (2)

where B is a backshift operator such that Bet =et−1.
The effectiveness of the PI controller is largely dictated by the tuning parameters kP and kI . Tsung et al.19

presented an optimal design procedure of PI controllers and noted that the PI controller is more robust to
model misspecification than the minimum mean square error controller. In this paper, only the PI controller
is studied, and the optimal design procedure due to Tsung et al.19 is followed. The main findings, however,
can be extended to other control schemes without significant modification.
In industrial practice, a process failure usually leads to a shift in process means. Common failures include

abrupt changes in raw materials21 and malfunctions of sensors22. Denote this sudden-shift type of failure
as �t . The measured deviation of the process is the additive effect of the regular output and the failure

et = xt−1+dt +�t (3)

where

�t =
{
0, t≤0

�, t>0
(4)

is the sustained shift signal. It occurs starting from t=1 and maintains a magnitude of � thereafter.
For the monitoring of process (3), Tsung et al.9 proposed a joint monitoring scheme that combines et and

xt to detect process shifts. Let

Vt =[et , xt ]T (5)

be a vector of the latest observations. A bivariate Hotelling’s T 2 chart is set up as follows:

T 2=VT
t R

−1Vt>h1 (6)

where R is the variance–covariance matrix of the vector, Vt , and it takes the form

R=
[

�2e �ex

�ex �2x

]
(7)
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(a) (b)

Figure 1. Responses of processes under PI controllers and their EWMA forecasts: (a) PI-controlled process 1: �=0.8,
�=−0.7, kP =−0.125, kI =−1.448 and (b) PI-controlled process 2: �=0.8, �=0.3, kP =−0.125, kI =−0.427

where �e and �x are the standard deviations of et and xt , respectively. �ex=cov(et , xt ) is the covariance
between et and xt . The computation of R for PI-controlled processes is discussed by Tsung and Shi23.
The parameter, h1, is the control limit that achieves a desired in-control average run length (ARL). As

both et and xt follow normal distributions, vector Vt follows a bivariate normal distribution. Accordingly,
T 2 follows a chi-square distribution with two degrees of freedom. The use of h1=�−2

2 (1−	) as the control
limit guarantees a false alarm rate no larger than 	9, where �−2

2 (·) is the inverse cumulative density function
(CDF) of the chi-square distribution with two degrees of freedom.
Although the above T 2 chart jointly monitors et and xt , the dynamic responses caused by the feedback

loop are not considered by this chart. Figure 1 shows the mean responses of two processes that are under
PI controllers. As is seen, starting from the step at which a process shift occurs, the mean of the output
stream, et , increases from zero to � immediately. After going through several oscillations, it stabilizes at
zero, limt→∞ E[et ]→0. In contrast, the mean xt decreases from zero first and then enters a negative steady
level with limt→∞ E[xt ]→−�. The transitional behavior of et and xt are the direct result of the sudden
shift and the feedback control loop. However, as the process enters its steady state, the information carried
by et vanishes, leaving only xt to show the abnormality of the process.
This clearly suggests the dynamic roles that et and xt play. Even though the process shift has a constant

size in (4), the measured shifts in both et and xt are time-varying. In the transient stage, the shift signal is
buried in both streams. In the steady-state stage, however, monitoring et is doubtful for the simple reason that
its mean approaches zero. Furthermore, the pattern differs for different processes. In Figure 1(a), exhibits
strong oscillations, whereas (b) shows a decaying trend.
In the following sections, we first introduce an index for measuring the efficiency of the multivariate

charts. Based on this index, a dynamic dimension reduction scheme is proposed to make full use of the
dynamic information for fault detection.

3. AN INDEX FOR MEASURING THE PERFORMANCE OF MULTIVARIATE
CONTROL CHARTS

Let x be a variable that represents a normal, independent and identically distributed process, and denote
its standard deviation as �x . When a two-sided Shewhart control chart on x is set up and a mean shift of
magnitude �1 occurs, the probability that the shift is detected is

p1=�(−h−�1/�x̄ )+1−�(h−�1/�x̄ ) (8)

where h is the control limit and � is the CDF of the standard normal distribution. The corresponding
out-of-control ARL of the chart is the inverse of p1, p

−1
1 .
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Equation (8) suggests that, once the control limit h is given, the out-of-control ARL of the chart is solely
determined by the standardized shift, �/�x . Let

R=�/�x (9)

be the standardized shift; Jiang et al.24 called this statistic the S/N ratio and noted its dominant role in the
efficiency of control charts on x . The larger the S/N ratio, the faster the shift is detected. This index is also
used by Jiang and Tsui25 and Jiang26 to measure the efficiency of a univariate control chart for monitoring
autocorrelated processes.
As the S/N ratio provides a convenient index to measure the efficiency of control charts on x , it is worth

trying to extend this index to a multivariate context. However, the performance of a multivariate chart is
usually affected by more factors. At this instant, we will study the way in which the performance of a
multivariate control chart is influenced by various factors and, furthermore, develop a feasible index to
measure and evaluate it.
We first introduce the notation that is used in determining the performance of a multivariate chart. Let

�2p,�(x) be the CDF of a chi-square distribution with p degrees of freedom and a non-centrality parameter

(NCP), �. When �=0, we abbreviate it to �2p(x). Further let �−2
p,�(x) be the inverse CDF of the distribution

and abbreviate it to �−2
p (x) if �=0.

Without loss of generality, we assume thatMt is a p-dimensional vector that follows a multivariate normal
distribution with mean zero and covariance matrix RM . Hotelling’s T 2 chart for detecting process mean
shifts is defined as

T 2
M =MT

t R
−1
M Mt>h2 (10)

It is known that the T 2
M statistic follows a chi-square distribution with p degrees of freedom. The control

limit is h2=�−2
p (1−	) given a false alarm rate of 	.

When the mean ofMt shifts to l,Mt ∼N (l,RM ), T 2
M in (10) follows a non-central chi-square distribution

with NCP given as

�=lTR−1l (11)

The out-of-control performance of (10) is solely determined by the magnitude of the NCP, �27. The larger the
�, the faster the shift is likely to be detected. This also explains that an out-of-control ARL is always smaller
than the in-control ARL, as the NCP equals zero when the process is in-control, while it becomes positive
in the event of any shift. In addition, when p=1, the matrix RM reduces to a scalar, and Equation (11) is
simplified to the square of the S/N ratio in Equation (9).
However, the NCP alone is not sufficient to determine the performance of a multivariate chart. For example,

if two charts are used to monitor the same vector, the one with a higher false alarm rate is expected to detect
a shift faster. Furthermore, if the NCPs of two charts are equal, the one with a lower dimension has a higher
detection sensitivity. In turn, for two charts to achieve the same charting performance, the one with a higher
dimension should have a larger NCP than the one with a lower dimension. These arguments are explained
by the data in Table I.
In Table I, the dimensions of some T 2 statistics are listed in the first and the fifth columns. The other

columns show the NCP of each chart. Each column achieves the same level of false alarm rate and detection
power. Let the probability that a shift is detected be f . When the dimension increases, NCP increases
accordingly. For example, for 	=0.10, the probability that a shift with NCP equals one being detected by
a one-dimensional T 2 chart is f =0.782 (for simplicity, we treat the one-dimensional chart as a special T 2

chart). In order to achieve the same level of false alarm rate and detection power, the NCP increases to 1.389
for p=2 and increases to 1.684 for p=3.
In order to compare the performance of T 2 charts with different parameter settings, we propose a multi-

variate S/N ratio (MSN) function that comprises all influential factors and maps the sensitivity of the charts
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Table I. Charts with equivalent sensitivity

	=0.100 	=0.050 	=0.002 	=0.100 	=0.050 	=0.002
f =0.782 f =0.867 f =0.988 f =0.782 f =0.867 f =0.988

p MSN=0.2636 MSN=0.1701 MSN=0.0928 p MSN=0.2636 MSN=0.1701 MSN=0.0928

1 1.000 1.000 1.000 11 3.132 3.245 3.393
2 1.389 1.411 1.427 12 3.266 3.387 3.548
3 1.684 1.721 1.752 13 3.395 3.523 3.697
4 1.931 1.980 2.026 14 3.519 3.654 3.841
5 2.147 2.208 2.268 15 3.638 3.780 3.981
6 2.342 2.413 2.488 16 3.754 3.902 4.115
7 2.521 2.601 2.692 17 3.866 4.021 4.246
8 2.688 2.777 2.882 18 3.975 4.136 4.374
9 2.844 2.941 3.061 19 4.080 4.248 4.498
10 2.992 3.097 3.231 20 4.183 4.357 4.619

to a common scale

MSN=1−�2p,�(�
−2
p (1−	)) (12)

where � is the NCP defined in (11). The values of the MSN parameter are dominated by three parameters:
the false alarm rate, 	, the dimension of the charting statistic, p, as well as the NCP, �. If either � or 	
increases, MSN increases; whereas if p increases, MSN decreases. In fact, MSN is the probability that a
particular shift with NCP � will be detected by the T 2 chart (10), in the current step, 0<MSN<1. Given all
the information available, MSN is capable of evaluating the sensitivity of charts with different dimensions
and false alarm rates. Therefore, it is reasonable to use MSN as an index to measure the performance
of multivariate control charts. The larger the MSN, the more powerful the chart is in detecting a specific
shift; while if two charts have equal MSN values, their sensitivities are also identical. For example, as
shown in the second column of Table I, the probability that a shift with �=1.684 being detected by a
three-dimensional chart equals the probability of a shift with �=1.389 being detected by a two-dimensional
chart, as both charts have MSN=0.264. This confirms that in order to show equivalent detection power,
a three-dimensional chart needs a higher NCP than a two-dimensional chart. Furthermore, if for the same
shift, another three-dimensional chart with 	=0.05 is set up, it has MSN=0.167, which means that this
chart has a relatively low false alarm rate, but consequently low detection power as well.
It is always desirable to maximize the MSN value by tuning design parameters. Among the influential

factors, parameter 	 is habitually chosen based on the economic consideration of false alarms and the slow
detection of real faults. It is therefore not practical and convincing to gain a higher MSN by sacrificing
alarm accuracy. Another parameter is �, which is determined by the real process status. It is believed that
this parameter is the main channel that carries process shift information and is therefore critical to the
successful detection of any process failures. If no process shifts occur, this parameter is expected to be zero.
Finally, there is the dimension of a chart. For the same level of �, a lower dimension gives a higher MSN.
Although the number of process variables is fixed, employing dimension reduction techniques to trim down
the dimension and, in the meantime, preserve useful information will improve the sensitivity of a control
chart.

4. AN ADR MONITORING SCHEME

The MSN introduced in Section 3 has demonstrated the functional relationship between the dimension and
the charting performance. To the extent that useful information is maintained, reducing the dimension is
one way of improving sensitivity and increasing robustness. This is also the primary motivation of popular
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dimension reduction techniques used in data analysis, regression analysis and pattern recognition28. In this
section, we propose an ADR scheme to handle the dynamic shift patterns in a multivariate application.
Related design issues are discussed as well.

4.1. The ADR framework

In multivariate control chart design, dimension reduction can be achieved via evaluating the importance of
each variable and abandoning less important variables. However, this issue becomes more complicated in a
dynamic context in which the contribution of a variable is difficult to quantify. Consider again the example
in Figure 1. The output variable, et , shows obvious shifts in its mean during the transient stage, which
suggests that it is important to fault detection. However, its mean approaches zero as time goes by, which
turns it into a redundant position. Hence, with the presence of dynamic shift patterns, the contribution of
any particular variable is not fixed. A dynamic decision procedure that can evaluate the contributions of
variables in real-time is therefore needed for efficient control chart design.
Following the notation used in (6), we use Vt =[et , xt ]T to denote the vector of the latest observations

and define a new vector

Wt =LT
t Vt (13)

where LT
t is an m×2 projection matrix that transforms the original vector, Vt , to Wt . With m≤2, the

transformed vector, Wt , has a lower or equal dimension than that of the original vector, Vt . The new vector,
Wt , can be monitored by the following T 2 chart:

T 2
W =WT

t R
−1
w Wt>h3 (14)

where Rw is the covariance matrix of Wt , Rw =LT
t RLt . In order to achieve a false alarm rate of 	, the

approximate control limit of this chart is given as h3=�−2
m (1−	).

As far as m<2 holds, the T 2 chart (14) will reduce the dimensions of the chart in (6). The projection
matrix, which is subscripted by a timestamp, t , plays an essential role in this scheme. If Lt performs in such
a way that the contribution of each variable is evaluated at each step and redundant variables are abandoned
dynamically, we call the chart in (14) an ADR chart.
Let lt be the mean vector of Vt at step t . Equation lt =0 holds if the process is in-control. Further

denoting the mean of Wt as lwt. lwt can be expressed as a function of lt :

lwt=E[Wt ]=E[LT
t Vt ]=LT

t lt (15)

Consequently, the NCP of chart (14) is given as

�wt=lTwtR−1
w lwt (16)

According to Equation (12), the MSN of the ADR chart becomes

MSNw =1−�2m,�wt
(�−2

m (1−	)) (17)

The key part in implementing the ADR scheme is to find the optimal Lt to maximize MSNw by projecting
Vt to a lower dimension space. Suppose that there are K possible ways of reducing the dimension of Vt .
It is convenient to express all the possible dimension reduction methods by K projection matrices, Lt (k),
1≤k≤K . Selecting the best dimension reduction method is equivalent to searching through the K projection
matrices for the optimal one that maximizes MSNw in (17). As m≤2 always holds, the ADR chart will
reduce, or in the worse scenario, maintain the dimension of the original vector, and maximize its sensitivity.
To evaluate the MSN of each projection method, the process mean vector, lt , needs to be known, which

is rarely the case in practice. In this paper, the mean vector is obtained via an efficient forecasting algorithm.
The details of forecasting lt will be introduced in a later section.
The proposed ADR procedure provides a general framework for projection-based methods. The conven-

tional T 2 chart can be treated as a special form of the ADR chart with LT
t =I. We can also express the
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covariance matrix, R, by its eigen-decomposition, R=UKUT, where U is a matrix of eigenvectors of R,
and K is a diagonal matrix with the corresponding eigenvalues on the diagonal. By removing insignificant
eigenvalues and their corresponding eigenvectors, we obtain two reduced m by m matrices, Km and Um ,
with m<p. If we further denote LT

t =K−1/2
m UT

m and use it with (13). The ADR chart reduces to a PCA-based
control chart.

4.2. Projection matrices for ADR

In the ADR procedure, the reduction of dimensions is achieved via the application of projection matrices.
The performance of the resulting ADR chart depends heavily on the efficiency of the matrix being used.
Therefore, the projection matrix, or the candidate matrices, should be chosen carefully. The fundamental
criteria for choosing appropriate projection methods include: first, the projected statistic must have a lower
dimension. In the ADR procedure, reduction in dimensions is one important way of improving sensitivity.
Second, the projected variables must be instructive of fault detection. Reducing the dimensions should not
be achieved at the cost of sacrificing significant variables. Third, the interpretability of out-of-control alarms
must be meaningful. In the event of an alarm signal, it is desirable for the chart itself to suggest which one
or group of underlying variables or components is responsible for this alarm.
In this part, two different dimension reduction strategies are studied. Correspondingly, two collections

of projection matrices are proposed to implement the reduction. The first strategy is built on the original
variables, whereas the second strategy is developed based on components obtained from an orthogonal
decomposition algorithm.
In regression analysis, variable selection involves building a regression model between response variables

and explanatory variables28. Significance testing of regression coefficients helps to remove insignificant
explanatory variables. In the ADR procedure, although the objective of maximizing MSN is different from
the purpose of conventional regression, the idea used in variable selection can still be borrowed. Each variable
is either included in or expelled from the final model. In the first dimension reduction strategy, which is
referred as ADR-1 in the remainder of this paper, we employ a naive enumerative algorithm. All possible
combinations of the variables are tried, and the one with the highest MSN is chosen for control chart setup.
Those variables that do not appear in the combination are naturally discarded. In the feedback-controlled
process, two variables, et and xt , are monitored; there are a total of three possible combinations, which are
shown as follows:

L(1) = [1,0]T

L(2) = [0,1]T

L(3) =
[
1 0

0 1

] (18)

The resulting statistics after applying the three matrices in (18) are et , xt , and Vt , respectively. As each
variable has a clear physical meaning, the interpretation of an out-of-control signal becomes straightforward.
The corresponding covariance matrix of each projection is

�(1) = �2e

�(2) = �2x

R(3) = R
(19)

The ADR-1 scheme is analogous to the diagnostic method presented by Doganaksoy et al.29, in which
each variable of a vector is checked when an out-of-control signal is triggered. However, the purpose here
is to reduce the dimension of the aggregate T 2 statistic. If a variable becomes insensitive to a process shift,
such as the et in its steady state, monitoring the remaining variables is expected to be more efficient.
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In the second strategy, which is referred to as ADR-2 in the remainder of this paper, independent compo-
nents are firstly obtained via an orthogonal decomposition. The reduction of dimensions is then achieved
by making a decision on which components are less informative and should be dropped.
Let Tx = xt/�x , Te·x =(et −xt�ex/�2x )/

√
�2e−�ex/�2x . Mason et al.30 suggested that the T 2 statistic in (6)

can be decomposed in two parts

T 2=T 2
x +T 2

e·x (20)

which is called the MYT-decomposition of the T 2 (Reference31). The two components, Tx and Te·x , obtained
from the decomposition are perpendicular. In order to fit the MYT-decomposed components into the projec-
tion framework, we define

L(1) = [0,1/�x ]T
L(2) = R−1[b1,0]T

L(3) =
[
1 0

0 1

] (21)

where b1=√
�2e−�2ex/�

2
x . The corresponding variance–covariance structure is

�(1) = 1

�(2) = 1

R(3) = R
(22)

In the ADR-2 scheme, L(1) transforms the vector Vt =[et , xt ]T to the standardized input, xt/�x , which is
the square root of the first component in (20). Applying projection L(2) to Vt yields

Wt =LT
t Vt =[b1,0]R−1

[
et

xt

]
=[b1,0]

⎡
⎢⎢⎢⎣

et −xt�ex/�2x
�2e−�ex/�2x

xt −et�ex/�2e
�2x −�ex/�2e

⎤
⎥⎥⎥⎦=Te·x (23)

which is the square root of the second component in (20). Therefore, implementing L(1) and L(2) is
equivalent to reducing the dimension via MYT-decomposition.
As noted by Mason et al.30, there are other ways of decomposing the T 2 statistic, which implies that

there are other options in choosing the projection matrices. In practice, good interpretability of decom-
posed components is one important criterion. In (21), the physical meaning of the projected components is
straightforward. An alarm reported by L(1) means that abnormal signals are found in the input stream. An
out-of-control signal triggered by L(2) suggests abnormalities in the conditional output when the status of
the input is known to be in-control. Based on (20), the use of L(3) leads to the monitoring of the original
vector, which means that neither xt nor et has sufficient evidence to report an alarm, while their overall
effect suggests the existence of a process failure.
It is interesting to note that the L(2) projection is equivalent to the U0 statistic in Jiang11. The U0 chart

is designed for utilizing individually. The ADR-2 scheme, however, has aggregated it with other statistics
to produce an adaptive framework. The automatic switches among different statistics are expected to take
advantage of each one and to produce a much more powerful chart.

4.3. Extensions to general multivariate applications

Although the two projection schemes in (18) and (21) are given based on the feedback-controlled process
in (1), it can be easily extended to a general environment with multiple variables.
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In order to find the maximum of MSN, the projection scheme in (18) involves enumerating all possible
combinations of variables. Suppose that there are p variables being measured and that the total number of
feasible combinations is 2p−1 (the combination with all variables excluded is ignored). The amount of
computational power will increase exponentially with p. Therefore, the ADR-1 chart is only feasible for
applications with small sets of variables.
In the ADR-2 procedure, the MYT-decomposition plays the central role in maximizing MSN. Let the

p process variables be z1, z2, . . . , z p. Furthermore, we use Tj · to denote the j th components of MYT-
decomposition, which is obtained by adjusting the j th variable, z j , with regard to all the ( j−1) variables,
z1, z2, . . . , z j−1. The calculation of the MYT-decomposition is discussed by Mason et al.30.
In a multivariate context, we still face the problem of choosing the best combination of the MYT-

decomposed components. As the number of components equals the number of the original variables,
the direct search needs to go through 2p−1 possibilities again. However, the search procedure can be
simplified by incorporating the orthogonal property of the components. The search procedure is listed as
follows:

(1) For the p components, calculate their respective MSN values.
(2) Sort the components from high to low based on MSN values.
(3) Set k= p; calculate the MSN for the T 2 chart on the first k components, (T1·, . . . ,Tk·).
(4) Calculate the MSN for the T 2 chart on the first (k−1) components, (T1·, . . . ,Tk−1·).
(5) If the MSN obtained in step 4 is larger than the MSN for the chart on the first k components, reduce

k by 1 and go back to step 4; otherwise, set k∗ =k, and choose to monitor the first k∗ components.

The above procedure is analogous to the backward variable selection in conventional regression analysis32,
in which variables are sequentially dropped based on their significance to the response variable. In the ADR-2
procedure, components are added or dropped based on their contribution to the MSN. The components
are first sorted based on their relative importance. Then, the smallest component is repeatedly dropped,
until MSN stops increasing. This stopping rule implies that no more components can be dropped without
reducing the MSN. Therefore, the maximum of the MSN will be achieved by monitoring the remaining
components. As the complexity of this procedure increases linearly with p, it will significantly alleviate the
computational demand of applications with large numbers of variables.
The sequence of the original variables, z1, z2, . . . , z p, influences the way that the components are generated.

Therefore, a carefully selected sequence is desired for easy interpretation of future out-of-control signals.
Analogous to the regression adjustment method in Hawkins33, we recommend denoting upstream vari-
ables with lower subscripts and downstream variables with higher subscripts. Thus, the MYT-decomposed
components will convey meaningful physical explanations.

4.4. Discussions on the mean vector estimation

In the implementation of the proposed ADR procedures, the real-time process mean vector is always needed
when evaluating and comparing the MSN of different statistics. As the mean vector is rarely known in
practice, we will employ forecasting algorithms to estimate the mean vector and set up the ADR charts for
process monitoring.
In general, a forecasting method can be either model-based or model-free. A model-based method involves

fitting a time-series model to a historical data set to gain a model for the process34,35. Then, a one-step-ahead
estimation can be obtained from the model. The downside of this method is its heavy dependency on model
accuracy. Estimating a time-series model for a process usually requires a large data set, especially when a
high-order model is used (Box et al.36).
Amodel-free method, on the other hand, does not assume a particular model for the process. It uses weights

or kernels to smooth out noise and to discover the running trend of a process. Among them, the exponentially
weighted moving average (EWMA) procedure assigns exponentially falling off weights to historical data to
obtain an estimation that balances both the latest and the historical data. Alwan and Roberts37 pointed out
that, for most cases, the EWMA procedure acts as a good approximation of a time-series process. Therefore,
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the application of the EWMA procedure is recommended in this paper due to its simplicity and its reasonably
good forecasting performance.
Let lt =[�e,�x ]T be the forecasted mean vector of Vt at time step t . The mean vector at t+1 is given as

lt+1=
lt +(1−
)Vt (24)

where 
 is a smoothing parameter that determines the falling speed of the weights of historical data in
forecasting a new mean vector. The above modeling procedure is analogous to the multivariate EWMA
procedure for monitoring multivariate applications. The limiting form of the variance of lt is given as

R� = 


2−

R (25)

The tuning parameter, 
, provides a lever to adjust how quickly a dynamic process is followed by the
forecasted sequence. If a larger 
 is used, more weight is assigned to the latest observations. Therefore, a
sudden process shift will be captured faster. However, the forecasting is easily misled by process fluctuation
and noise. In contrast, a smaller 
 provides more stable forecasting, while its response to large sudden shifts
may be slow.
The trajectories of two PI-controlled processes are shown in Figure 1. The corresponding EWMA forecasts

are also plotted. As is seen from Figure 1(a), in the transient stage, when the process undergoes strong
oscillations, the EWMA estimation approaches the mean of the process gradually. In the steady-state stage,
the process is stabilized; the estimated mean almost overlaps with the true process mean. In Figure 1(b),
the process decays smoothly when a sudden shift occurs. The EWMA procedure provides an even better
forecasting performance.

5. PERFORMANCE STUDY OF THE ADR SCHEME

The performance of quality-control charts is commonly measured by their ARL. To explore this, we carry
out simulation studies in this section to compare the proposed method with existing schemes.
Several existing schemes are chosen for comparison. The first chart is the general T 2 chart (denoted as

GT2 hereafter) proposed by Tsung et al.9, which involves a joint monitoring of et and xt based on the vector
Vt =[et , xt ]T. The second and the third charts to be considered are the U0 chart and the U∞ chart proposed
by Jiang11. The fourth and the fifth competitors are two multi-charts. By combining multiple Shewhart
charts, the resulting multi-chart signals if any individual chart signals38. As all projected statistics derived
in (18) and (21) are possibly useful for fault detection, a collection of Shewhart charts can be set up for the
statistics. We denote the multi-chart derived from (18) and (21) as Multi-1 and Multi-2, respectively.
The process being investigated follows model (1) with �=0.8 and �=0.3. The optimal PI controller

suggested by Tsung et al.19 has kP =−0.125 and kI =−0.427. Process shifts modeled by (4) are added to
the process. All shift magnitudes, s, satisfy 0≤s≤5, which covers both small and large shift ranges. For a
fair comparison, the in-control ARL of all charts is forced to be 200, and each ARL is computed using at
least 100 000 replicates.
We first review the performance of the competing charts. The ARLs of these charts are shown in Table II.

The results clearly show that for small mean shifts, the xt chart and the U∞ chart have shorter ARLs than
other charts. This finding is consistent with the conclusions drawn by Jiang11. In the presence of large mean
shifts, the GT2 chart and the Multi-1 and Multi-2 charts outperform all others. The optimality of the GT2
chart in a large shift range is explained by its Shewhart-type property. In contrast to a cumulative-sum-
or EWMA-type chart, a Shewhart-type chart is not influenced by historical observations and can respond
quickly to sudden process changes. With regard to the Multi-1 and the Multi-2 charts, all informative
variables are monitored, and these variables contribute to the fast detection of large mean shifts.
Table III shows the charting performance of the proposed ADR charts. Different smoothing parameters

are employed by each chart, as shown in the second row of Table III. A careful examination of Table III
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Table II. Performance comparison of competing charts

s GT2 U0 U∞ et xt Multi-1 Multi-2

0.0 199.97 199.94 200.04 200.02 200.05 200.47 200.10
0.5 149.88 177.89 124.44 198.68 126.25 153.51 149.15
1.0 80.26 132.13 56.48 194.02 57.74 82.88 79.16
1.5 40.92 89.86 27.89 181.68 28.50 41.17 40.28
2.0 21.20 59.13 15.36 158.37 15.56 20.68 21.22
2.5 11.20 37.53 9.28 123.38 9.22 10.64 11.59
3.0 5.87 22.47 6.08 83.21 5.84 5.49 6.38
3.5 3.16 12.41 4.32 47.34 3.93 2.94 3.57
4.0 1.85 6.37 3.32 21.72 2.79 1.75 2.12
4.5 1.28 3.17 2.72 8.44 2.07 1.24 1.42
5.0 1.08 1.74 2.36 2.96 1.60 1.07 1.14

Table III. ARL of the ADR-1 and the ADR-2 charts

ADR-1 ADR-2

s 
=0.01 
=0.1 
=0.5 
=0.01 
=0.1 
=0.5

0.0 199.17 200.66 200.35 199.93 199.82 199.91
0.5 123.32 139.95 151.09 123.77 134.97 148.30
1.0 54.87 67.83 80.05 55.98 64.30 77.89
1.5 25.75 32.12 39.39 27.00 31.26 39.06
2.0 12.74 15.80 19.74 13.97 16.14 20.33
2.5 6.50 8.02 10.12 7.52 8.69 11.01
3.0 3.43 4.16 5.22 4.14 4.78 6.02
3.5 1.98 2.30 2.81 2.41 2.74 3.37
4.0 1.34 1.47 1.69 1.56 1.72 2.01
4.5 1.10 1.15 1.22 1.19 1.25 1.38
5.0 1.02 1.04 1.06 1.06 1.08 1.12

shows that ADR-1 and the ADR-2 charts exhibit comparable performance over the whole shift range. For

=0.5 and 
=0.1, ADR-2 is favored over ADR-1 for small shifts; whereas for 
=0.01, the performance of
ADR-1 is slightly better than that of ADR-2 for all shift magnitudes. However, the large shift performance
of both charts has not improved when 
 increases. Therefore, a smaller smoothing parameter is always
recommended for practitioners. Extensive simulations show that the value of 0.01 for 
 is a reasonably good
choice.
Before further comparisons of the ADR schemes and the competing charts in Table II, we conduct a

thorough study of the way in which the ADR schemes work. As is seen from (18) and (21), both schemes
consist of multiple projection matrices. At each step, only one of the projected statistics is chosen to function.
Therefore, isolating effective statistics in each scheme can help us to identify the contribution of each statistic
to the overall performance.
Figure 2 demonstrates the switching patterns in the ADR-1 chart. Two hundred out-of-control signals are

collected. The height of each bin represents the number of alarms released by the corresponding projection
matrix, which is given in (18).
As is seen from Figure 2, for small shifts, s=0.5 or 1.0, the alarms are mostly accumulated on scale L(2).

As the second projected statistic is xt , this result suggests that xt plays an instructive role in detecting small
shifts. Small shifts usually require long runs before they are detected. During the undetected out-of-control
period, as the trajectories in Figure 1 suggest, the output, et , approaches zero gradually. However, a sustained
change is observed in xt . Therefore, it is xt that contributes most to the identification of small shifts. When
the shift magnitude increases to 2.0 or 3.0, the possibility that the first projected statistic, et , be chosen
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s=0.5 s=1 s=2

s=3 s=4 s=5

Figure 2. Switching patterns of the ADR-1 chart

s=0.5 s=1 s=2

s=3 s=4 s=5

Figure 3. Switching patterns of ADR-2 chart

increases. Starting from s=3.0, et is more frequently chosen than xt , which suggests that et becomes more
informative in detecting large mean shifts. This is consistent with the conclusions drawn in Jiang11 and
Tsung and Tsui8, who concluded that monitoring output et is more efficient for large shift detection.
Similar switching patterns are found in Figure 3, in which the run-time status of the ADR-2 chart is

recorded. For small shifts, the out-of-control alarms are frequently reported by projection matrix 1, which
corresponds to the direct monitoring of xt . As the magnitude of the process shifts increases, projection 2
is more frequently chosen. The patterns agree with the findings by Jiang11, which suggested that the U0 is
sensitive to large mean shifts.
Now we compare the ADR-1 and the ADR-2 schemes with the charts in Table II. First, we focus on large

shifts. Compared with the GT2 chart, which is claimed to be sensitive to large shifts, significant improvement
is observed with the ADR-1 and the ADR-2 charts. This suggests that the ADR schemes are always favored
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if large shifts are of interest. For small shifts, both the ADR-1 and the ADR-2 charts with small 
 outperform
the U∞ chart.
Overall, the benefit of applying the ADR charts is obvious. Conventional monitoring schemes usually stick

to a particular statistic. The ADR scheme, however, switches automatically among the projected statistics
and chooses the most efficient one for functioning at each step. The dimension reduction principle guarantees
the optimality of each statistic, and the ADR procedure successfully takes advantage of each statistic to
produce a method with overall good performance.

6. CONCLUSIONS

In order to improve the performance of a multivariate control chart, it is always desirable to reduce dimensions
and preserve only informative variables for monitoring. However, in a feedback-controlled process, most
variables have time-varying shifts and their contribution to fault detection also changes over time, which
makes it difficult to choose important variables statically. A dynamic and ADR scheme is therefore of great
need.
In this paper, we first proposed an MSN. The MSN maps the detection power of multivariate charts to a

common scale and compares their sensitivity in detecting a particular shift. Multivariate charts with diverse
dimensions and false alarm rates can be compared on the basis of MSN.
An ADR scheme has been proposed and two-dimensional reduction procedures are considered to project

the original vector into a low-dimensional space. Based on MSN, the ADR scheme makes decisions on
choosing the most informative variables or components at each step to maximize the detection power.
Simulation results have demonstrated that the ADR scheme substantially improves both large and small shift
performance, and the two charts, ADR-1 and ADR-2, have demonstrated almost equally good performance.
Although developed for a feedback-control process, the ADR charts can be easily extended to a general

application with multiple process variables. The ADR-1 chart may suffer from huge demand for computa-
tional power, while the searching algorithm of the ADR-2 chart has been optimized to minimize the demand
for computational power. Therefore, the ADR-2 chart is recommended for application to a large number of
variables.
Furthermore, the ADR scheme is a flexible framework and can be easily extended. New dimension

reduction techniques can be fitted to the unified framework in Equation (14) without significant modification,
which is a topic that deserves additional research effort.
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